2mm Tower Type Blue LED
 Technical Data Sheet

Part No.: 204BC1F-B4-1G

Luckylight

Features:

$\diamond 2 \mathrm{~mm}$ Tower.
\diamond High efficiency.
\diamond Selected minimum intensities.
\diamond Available on tape and reel.
\diamond The product itself will remain within RoHS compliant Version.

Descriptions:
\diamond The series is specially designed for applications requiring higher brightness.
\diamond The LED lamps are available with different colors, intensities.

Applications:

Status indicators.\diamond Commercial use.
\diamond Advertising Signs.
\diamond Back lighting.

Luckylight

Package Dimension:

Part No.	Chip Material	Lens Color	Source Color
204BC1F-B4-1G	InGaN	Water Clear	Blue

Notes:

1. All dimensions are in millimeters (inches).
2. Tolerance is $\pm 0.25 \mathrm{~mm}$ (. $010^{\prime \prime}$) unless otherwise noted.
3. Protruded resin under flange is 1.00 mm (.039") max.
4. Specifications are subject to change without notice.

Spec No.: A023 X430
Approved: JoJo
Rev No.: V. 3
Checked: Wu Lucky Light Electronics Co., Ltd.

Date: Oct./14/2008
Drawn: Yang http://www.luckylightled.com

Luckylight
Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameters	Symbol	Max.	Unit
Power Dissipation	PD	95	mW
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	IFP	100	mA
Forward Current	IF	25	mA
Reverse Voltage	VR	5	V
Electrostatic Discharge (HBM)	ESD	400	V
Operating Temperature Range	Topr	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Storage Temperature Range	Tstg	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	
Lead Soldering Temperature $[4 m m ~(.157 ") ~ F r o m ~ B o d y] ~$	Tsld	$260^{\circ} \mathrm{C}$ for 5 Seconds	

Electrical Optical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameters	Symbol	Min.	Typ.	Max.	Unit	Test Condition
Luminous Intensity *	IV	450	700	---	mcd	IF=20mA (Note 1)
Viewing Angle *	$2 \theta_{1 / 2}$	---	60	---	Deg	IF=20mA (Note 2)
Peak Emission Wavelength	λp	---	468	---	$n m$	IF=20mA
Dominant Wavelength	λd	---	470	---	$n m$	IF=20mA (Note 3)
Spectral Line Half-Width	$\triangle \lambda$	---	25	---	nm	IF=20mA
Forward Voltage	VF	2.80	3.20	3.80	V	IF=20mA
Reverse Current	IR	---	---	10	$\mu \mathrm{~A}$	$\mathrm{~V}=5 \mathrm{~V}$

Notes:

1. Luminous Intensity Measurement allowance is $\pm 10 \%$.
2. $\theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
3. The dominant wavelength ($\lambda \mathrm{d}$) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Luckylight

Typical Electrical / Optical Characteristics Curves
($25^{\circ} \mathrm{C}$ Ambient Temperature Unless Otherwise Noted)

Luminous Intensity \&

Forward Current Derating Curve

Forward Current \& Forward Voltage $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Luminous Intensity \& Forward Current

Radiation Diagram

Spec No.: A023 X430
Approved: JoJo Lucky Light Electronics Co., Ltd.

Date: Oct./14/2008
Drawn: Yang
http://www.luckylightled.com

Luckylight

Reliability Test Items And Conditions:

The reliability of products shall be satisfied with items listed below:
Confidence level: 90\%.
LTPD: 10\%.

1) Test Items and Results:

Test Item	Standard Test Method	Test Conditions	Note	Number of Damaged
Resistance to Soldering Heat	$\begin{aligned} & \text { JEITA ED-4701 } \\ & 300302 \end{aligned}$	Tsld $=260 \pm 5^{\circ} \mathrm{C}, 10 \mathrm{sec} 3 \mathrm{~mm}$ from the base of the epoxy bulb	1 time	0/100
Solderability	$\begin{gathered} \text { JEITA ED-4701 } \\ 300303 \end{gathered}$	$\begin{gathered} \text { Tsld }=235 \pm 5^{\circ} \mathrm{C}, 5 \mathrm{sec} \\ \text { (using flux) } \end{gathered}$	1 time over 95\%	0/100
Thermal Shock	$\begin{gathered} \text { JEITA ED-4701 } \\ 300307 \end{gathered}$	$0^{\circ} \mathrm{C} \sim 100^{\circ} \mathrm{C} 15 \mathrm{sec}, 15 \mathrm{sec}$	100 cycles	0/100
Temperature Cycle	$\begin{aligned} & \text { JEITA ED-4701 } \\ & 100105 \\ & \hline \end{aligned}$	$-40^{\circ} \mathrm{C} \sim 25^{\circ} \mathrm{C} \sim 100^{\circ} \mathrm{C} \sim 25^{\circ} \mathrm{C}$ $30 \mathrm{~min}, 5 \mathrm{~min}, 30 \mathrm{~min}, 5 \mathrm{~min}$	100 cycles	0/100
Moisture Resistance Cycle	$\begin{aligned} & \text { JEITA ED-4701 } \\ & 200203 \\ & \hline \end{aligned}$	$\begin{gathered} 25^{\circ} \mathrm{C} \sim 65^{\circ} \mathrm{C} \sim-10^{\circ} \mathrm{C} 90 \% \mathrm{RH} \\ 24 \mathrm{hrs} / 1 \mathrm{cycle} \\ \hline \end{gathered}$	10 cycles	0/100
High Temperature Storage	$\begin{gathered} \text { JEITA ED-4701 } \\ 200201 \end{gathered}$	$\mathrm{Ta}=100^{\circ} \mathrm{C}$	1000hrs	0/100
Terminal Strength (Pull test)	$\begin{gathered} \text { JEITA ED-4701 } \\ 400401 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Load 10N (1kgf) } \\ 10 \pm 1 \mathrm{sec} \\ \hline \end{gathered}$	No noticeable damage	0/100
Terminal Strength (bending test)	$\begin{gathered} \text { JEITA ED-4701 } \\ 400401 \\ \hline \end{gathered}$	Load $5 \mathrm{~N}(0.5 \mathrm{kgf})$ $0^{\circ} \sim 90^{\circ} \sim 0^{\circ}$ bend 2 times	No noticeable damage	0/100
Temperature Humidity Storage	$\begin{gathered} \text { JEITA ED-4701 } \\ 100103 \end{gathered}$	$\mathrm{Ta}=60^{\circ} \mathrm{C}, \mathrm{RH}=90 \%$	1000hrs	0/100
Low Temperature Storage	$\begin{gathered} \text { JEITA ED-4701 } \\ 200202 \\ \hline \end{gathered}$	$\mathrm{Ta}=-40^{\circ} \mathrm{C}$	1000hrs	0/100
Steady State Operating		$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{IF}=30 \mathrm{~mA}$	1000hrs	0/100
Steady State Operating Life of High Humidity Heat		$\begin{gathered} \mathrm{Ta}=60^{\circ} \mathrm{C}, \mathrm{RH}=90 \%, \\ \mathrm{IF}=30 \mathrm{~mA} \end{gathered}$	500hrs	0/100
Steady State Operating Life of Low Temperature		$\mathrm{Ta}=-30^{\circ} \mathrm{C}, \mathrm{IF}=20 \mathrm{~mA}$	1000hrs	0/100

2) Criteria for Judging the Damage:

Item	Symbol	Test Conditions	Criteria for Judgment	
			Min	Max
Forward Voltage	VF	IF $=20 \mathrm{~mA}$	---	F.V.* $) \times 1.1$
Reverse Current	IR	VR=5V	---	F.V.* $) \times 2.0$
Luminous Intensity	IV	IF $=20 \mathrm{~mA}$	F.V.*) $\times 0.7$	---

*) F.V.: First Value.

Spec No.: A023 X430
Rev No.: V. 3
Date: Oct./14/2008
Page: 6 OF 7
Approved: JoJo
Checked: Wu
Lucky Light Electronics Co., Ltd.

Drawn: Yang

Luckylight

Please read the following notes before using the product:

1. Over-current-proof

Customer must apply resistors for protection, otherwise slight voltage shift will cause big current change (Burn out will happen).
2. Storage
2.1 Do not open moisture proof bag before the products are ready to use.
2.2 Before opening the package, the LEDs should be kept at $30^{\circ} \mathrm{C}$ or less and 80% RH or less.
2.3 The LEDs should be used within a year.
2.4 After opening the package, the LEDs should be kept at $30^{\circ} \mathrm{C}$ or less and 60% RH or less.
2.5 The LEDs should be used within 168 hours (7 days) after opening the package.
3. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than $260^{\circ} \mathrm{C}$ for 5 seconds within once in less than the soldering iron capacity 25 W . Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

4. Soldering

When soldering, for Lamp without stopper type and must be leave a minimum of 3 mm clearance from the base of the lens to the soldering point.
To avoided the Epoxy climb up on lead frame and was impact to non-soldering problem, dipping the lens into the solder must be avoided.
Do not apply any external stress to the lead frame during soldering while the LED is at high temperature.
Recommended soldering conditions:

Soldering Iron		Wave Soldering	
Temperature	$300^{\circ} \mathrm{C}$ Max.	Pre-heat	$100^{\circ} \mathrm{C} \mathrm{Max}$.
Soldering Time	3 sec. Max.	Pre-heat Time	60 sec. Max.
	(one time only)	Solder Wave	$260^{\circ} \mathrm{C} \mathrm{Max}$.
		Soldering Time	5 sec. Max.

Note: Excessive soldering temperature and / or time might result in deformation of the LED lens or catastrophic failure of the LED.

5. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

6. Caution in ESD

Static Electricity and surge damages the LED. It is recommended to use a wrist band or anti-electrostatic glove when handling the LED. All devices equipment and machinery must be properly grounded.

